Language Models Review: 1-28

- Why are language models (LMs) useful?
- Maximum Likelihood Estimation for Binomials
- Idea of Chain Rule, Markov assumptions
- Why is word sparsity an issue?
- Further interest: Leplace Smoothing, Good-Turing Smoothing, LMs in topic modeling.

Independence: ... iff P(A,B) = P(A)P(B)

Disjoint Sets: If two events, A and B, come from disjoint sets, then P(A,B) = 0

Independence: ... iff P(A,B) = P(A)P(B)

Disjoint Sets: If two events, A and B, come from disjoint sets, then P(A,B) = 0

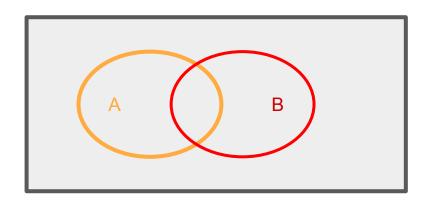
Does independence imply disjoint?

Independence: ... iff P(A,B) = P(A)P(B)

Disjoint Sets: If two events, A and B, come from disjoint sets, then P(A,B) = 0

Does independence imply disjoint? No

Proof: A counterexample: A: first coin flip is heads, B: second coin flip is heads; P(A)P(B) = P(A,B), but .25 = P(A, B) = -0

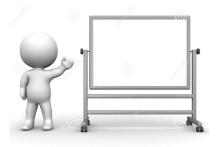


Independence: ... iff P(A,B) = P(A)P(B)

Disjoint Sets: If two events, A and B, come from disjoint sets, then P(A,B) = 0

Does independence imply disjoint? No Proof: A counterexample: A: first coin flip is heads, B: second coin flip is heads; P(A)P(B) = P(A,B), but .25 = P(A, B) = -0

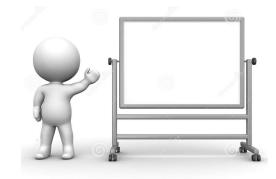
Does disjoint imply independence?



Tools for Decomposing Probabilities

Whiteboard Time!

- Table
- Tree



Examples:

- urn with 3 balls (with and without replacement)
- conversation lengths
- championship bracket

Probabilities over >2 events...

Independence:

 A_1, A_2, \dots, A_n are independent iff $P(A_1, A_2, \dots, A_n) = \prod P(A_i)$

Probabilities over >2 events...

Independence:

 $A_{1}, A_{2}, ..., A_{n} \text{ are independent iff } P(A_{1}, A_{2}, ..., A_{n}) = \prod P(A_{i})$ Conditional Probability: $P(A_{1}, A_{2}, ..., A_{n-1} | A_{n}) = P(A_{1}, A_{2}, ..., A_{n-1}, A_{n}) / P(A_{n})$ $P(A_{1}, A_{2}, ..., A_{m-1} | A_{m}, A_{m+1}, ..., A_{n}) = P(A_{1}, A_{2}, ..., A_{m-1}, A_{m}, A_{m+1}, ..., A_{n}) / P(A_{m}, A_{m+1}, ..., A_{n})$

(just think of multiple events happening as a single event)

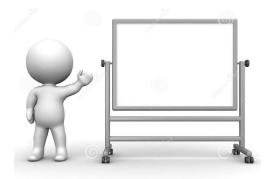
Conditional Independence

A and B are conditionally independent, given C, IFF P(A, B | C) = P(A|C)P(B|C)

Equivalently, P(A|B,C) = P(A|C)

Interpretation: Once we know C, B doesn't tell us anything useful about A.

Example: Championship bracket



GOAL: Relate P(A|B) to P(B|A)

GOAL: Relate P(A|B) to P(B|A)

- (1) P(A|B) = P(A,B) / P(B), def. of conditional probability
- (2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union

GOAL: Relate P(A|B) to P(B|A)

- (1) P(A|B) = P(A,B) / P(B), def. of conditional probability
- (2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union
- (3) P(A,B) = P(B|A)P(A), algebra on (2) \leftarrow known as "Multiplication Rule"

GOAL: Relate P(A|B) to P(B|A)

- (1) P(A|B) = P(A,B) / P(B), def. of conditional probability
- (2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union
- (3) P(A,B) = P(B|A)P(A), algebra on (2) \leftarrow known as "Multiplication Rule"
- (4) P(A|B) = P(B|A)P(A) / P(B), Substitute P(A,B) from (3) into (1)

GOAL: Relate P(A|B) to P(B|A)

- (1) P(A|B) = P(A,B) / P(B), def. of conditional probability
- (2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union
- (3) P(A,B) = P(B|A)P(A), algebra on (2) \leftarrow known as "Multiplication Rule"
- (4) P(A|B) = P(B|A)P(A) / P(B), Substitute P(A,B) from (3) into (1)

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω partition: $P(A_1 \cup A_2 \dots \cup A_k) = \Omega$ $P(A_i, A_i) = 0$, for all i $\neq j$

GOAL: Relate
$$P(A_i|B)$$
 to $P(B|A_i)$,
for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω
partition: $P(A_1 \cup A_2 \dots \cup A_k) = \Omega$
 $P(A_i, A_j) = 0$, for all i $\neq j$

law of total probability: If $A_1 \dots A_k$ partition Ω , then for any event, B $P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$

i=1

GOAL: Relate
$$P(A_i|B)$$
 to $P(B|A_i)$,
for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

partition:
$$P(A_1 \cup A_2 \dots \cup A_k) = \Omega$$

 $P(A_i, A_j) = 0$, for all $i \neq j$

law of total probability: If $A_1 \dots A_k$ **partition** Ω, then for any event, *B*

$$P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$$

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

- (1) $\mathbf{P}(A_i|B) = \mathbf{P}(A_i,B) / \mathbf{P}(B)$
- (2) $P(A_i,B) / P(B) = P(B|A_i) P(A_i) / P(B)$, by multiplication rule

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

- (1) $\mathbf{P}(A_i|B) = \mathbf{P}(A_i,B) / \mathbf{P}(B)$
- (2) $P(A_i,B) / P(B) = P(B|A_i) P(A_i) / P(B)$, by multiplication rule *but in practice, we might not know P(B)*

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

- (1) $\mathbf{P}(A_i|B) = \mathbf{P}(A_i,B) / \mathbf{P}(B)$
- (2) $P(A_i, B) / P(B) = P(B|A_i) P(A_i) / P(B)$, by multiplication rule *but in practice, we might not know P(B)*
- (3) $P(B|A_i) P(A_i) / P(B) = P(B|A_i) P(A_i) / (\sum_{i=1}^k P(B|A_i) P(A_i))$, by law of total probability

GOAL: Relate $P(A_i|B)$ to $P(B|A_i)$, for all i = 1 ... k, where $A_1 \dots A_k$ partition Ω

Let's try:

- (1) $\mathbf{P}(A_i|B) = \mathbf{P}(A_i,B) / \mathbf{P}(B)$
- (2) $P(A_i,B) / P(B) = P(B|A_i) P(A_i) / P(B)$, by multiplication rule *but in practice, we might not know P(B)*

(3) $P(B|A_i) P(A_i) / P(B) = P(B|A_i) P(A_i) / (\sum_{i=1}^{k} P(B|A_i) P(A_i))$, by law of total probability

Thus,
$$P(A_i|B) = P(B|A_i) P(A_i) / (\sum_{i=1}^{k} P(B|A_i)P(A_i))$$

57

Probability Theory Review: 2-2

- Conditional Independence
- How to derive Bayes Theorem based
- Law of Total Probability
- Bayes Theorem in Practice